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SYSTEM DYNAMIC ANALYSIS OF A WIND TUNNEL MODEL WITH

APPLICATIONS TO IMPROVE AERODYNAMIC DATA QUALITY

ABSTRACT
The research investigates the effect of wind tunnel model system dynamics on measured
aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the
required aerodynamic measurements are the steady-state balance forces and moments,
pressures, and model attitude. However, the wind tunnel model system can be subjected
to unsteady aerodynamic and inertial loads which result in oscillatory translations and
angular rotations.  The steady-state force balance and inertial model attitude
measurements are obtained by filtering and averaging data taken during conditions of
high model vibrations. The main goals of this research are to characterize the effects of
model system dynamics on the measured steady-state aerodynamic data and develop a
correction technique to compensate for dynamically induced errors. Equations of motion
are formulated for the dynamic response of the model system subjected to arbitrary
aerodynamic and inertial inputs. The resulting modal model is examined to study the
effects of the model system dynamic response on the aerodynamic data. In particular, the
equations of motion are used to describe the effect of dynamics on the inertial model
attitude, or angle of attack, measurement system that is used routinely at the NASA
Langley Research Center and other wind tunnel facilities throughout the world. This
activity was prompted by the inertial model attitude sensor response observed during high

levels of model vibration while testing in the National Transonic Facility at the NASA



Langley Research Center. The inertial attitude sensor cannot distinguish between the
gravitational acceleration and centrifugal accelerations associated with wind tunnel model
system vibration, which results in a model attitude measurement bias error. Bias errors
over an order of magnitude greater than the required device accuracy were found in the
inertial model attitude measurements during dynamic testing of two model systems.
Based on a theoretical modal approach, a method using measured vibration amplitudes
and measured or calculated modal characteristics of the model system is developed to
correct for dynamic bias errors in the model attitude measurements. The correction
method is verified through dynamic response tests on two model systems and actual wind

tunnel test data.
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Chapter 1
INTRODUCTION
1.1 Introduction
Model vibrations are a significant problem when testing in high pressure wind tunnels.
As discussed by Young [1], model vibrations can jeopardize model structural integrity,
overload force balances and support stings, cause models to foul, affect aerodynamic

data, and often limit test envelopes.

The National Transonic Facility [2] , NTF, is a transonic wind tunnel located at NASA
Langley Research Center which has the capability for testing models at Reynolds number
up to 140 million at Mach 1 and dynamic pressure up to 7000 pounds per square foot.
The NTF is a cryogenic facility with operating temperatures as low as -290°F. Severe
model vibrations have been encountered on a number of models since the tunnel began
operation in 1984. References 3 through 6 document studies of model and model support
vibrations in the facility. During a 1993 wind tunnel test, increased uncertainty in the
model attitude data was observed for periods of high model vibration. The response of
the onboard instrumentation to electrodynamic shaker input to the model without tunnel
airflow, "wind-off", was examined for two transport model systems [7, 8] at the NTF.
These wind-off dynamic tests found model vibration induced errors over an order of
magnitude greater than the required accuracy for the inertial model attitude

measurements.



This research investigates the effect of wind tunnel model system dynamics on measured
aerodynamic data. The objective is to improve the aerodynamic data quality during
conditions of high model vibrations. The equations of motion are developed using
Lagrange's equations for the generalized problem of a cantilevered wind tunnel model.
This was the first time a system dynamic analysis approach was used to examine the
effects of model vibrations on the aerodynamic data. The modal solution of the
equations of motion provides valuable insight into the underlying physics and provides
the basis for the proposed "modal correction method" for dynamically induced errors in
wind tunnel model attitude measurements. The proposed correction method uses the
modal properties of the model system to minimize the number of transducers required for
implementation. This is critical due to limited interior model space and thermal
considerations associated with cryogenic wind tunnels where heated instrumentation
packages are required. The method was the first time domain technique developed to
compensate for multiple modes in both the pitch and yaw planes of the model system.
The ability to correct in the time domain is necessitated by the random nature of the
measured model dynamic response and the increased emphasis on correlating time

dependent changes in model attitude with aerodynamic loads.

1.2 Problem Description

The majority of wind tunnel tests are conducted with a model supported on the end of a
long tapered cylinder, referred to as a "sting", which is cantilevered from an arc sector or

movable vertical strut-type of support. A schematic of the NTF model support system is



shown in Figure 1.1. Pitch attitude of the model is adjusted by rotation of the arc sector.
The arc sector system is designed such that the center of rotation of the arc sector is at the
model, so that changing the model pitch angle does not translate the model to a different
position relative to the wind tunnel test section. Roll attitude of the model can be
adjusted by rotation of the sting. A six component force balance is used as the single
point of attachment between the model and support sting as shown in Figure 1.2. In
order to achieve the desired measurement accuracy on three force and three moment
aerodynamic load components, the balance is designed to be flexible as compared to the
sting. The flexibility of the balance results in vibration modes characterized by the model
vibrating as a rigid body on a spring (force balance) in pitch, yaw and roll. These modes
are typically lightly damped and often excited during wind tunnel testing [6]. Other
primary low frequency vibration modes are associated with sting bending in the pitch and
yaw planes, where most of the bending deformation occurs over the small diameter

portion of the sting near the model.

This dissertation will focus on the "pitch-pause” [9] wind tunnel test technique since the
supporting wind tunnel test data were acquired using this technique at the NTF. The
pitch-pause technique is a common test method used to obtain aerodynamic loads data in
continuous flow, closed circuit wind tunnels. In the pitch-pause technique, the model is
moved to a prescribed angle of attack with respect to the velocity vector, the transient
responses are allowed to decay, and then the force balance, pressure, and angle of attack

data are measured. At the NTF, the data measurement period is one second. The
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procedure is then repeated for a series of model attitudes, which is referred to as a polar.
Increasing emphasis on wind tunnel productivity is pushing facilities towards shorter test
times (less time on point for transient dynamics to decay) and the effect on the

aerodynamic data accuracy must be evaluated.

During wind tunnel tests, free stream turbulence produce fluctuations in dynamic pressure
and flow angularity leading to unsteady forces on the model. The force balance and angle
of attack measurements are typically low-pass filtered and averaged to obtain "steady-
state" model attitude, aerodynamic force and moment data [10]. It is not unusual for the
peak-to-peak variation of the dynamic component of the "steady-state” force data to be
50% or more of the true mean. In Reference [11], the unsteadiness of the airflow and the
resulting model vibration is discussed. It is noted that, if the model vibration response
due to the flow unsteadiness is excessive, the ability to accurately measure the
aerodynamic quantities of interest may be compromised. Mabey [11] approaches the
problem by examining methods to reduce the flow unsteadiness in the wind tunnel. In
the Advisory Group for Aerospace Research and Development (AGARD) report entitled
"Wind Tunnel Flow Quality and Data Accuracy Requirements" [12], one of the data
accuracy issues is the measurement of, and correction for, aeroelastic deformations and
vibrations of models and support systems. Accuracy requirements [12] for lift, drag, and
pitching moment for transport type aircraft in the high speed regime are: Lift Coefficient
AC; =001 ; Drag Coefficient ACp=00001 ; Pitching-moment coefficient

ACys =0001. 1In order to maintain the required accuracy, the tunnel free-stream



conditions must be repeatable within the following boundaries: Tunnel total and
stagnation pressure, AP=0.1%; Model angle of attack, Ao =0.01°; and Mach Number:
AM =0.001. As an example, for conditions near a maximum lift to drag ratio, an increase

of 1 drag count (ACp = 0.0001) will decrease the payload by approximately 1% for the

long-range mission of a large transport aircraft.

The predominant instrumentation used to measure model attitude or angle of attack
(AOA) in wind tunnel testing at NASA Langley Research Center and wind tunnels
throughout the world is the servo accelerometer device described in Reference 13. The
inertial AOA package is shown installed in the nose of a test model in Figure 1.2. The
AOA package uses a servo accelerometer with its sensitive axis parallel with the
longitudinal axis of the model. For quasi-static conditions, this sensor provides a model
attitude measurement with respect to the local gravity field to an accuracy of £0.01° over
a range of £20°. An increment of 0.01° corresponds to an acceleration of 175 micro-g's.
During wind tunnel testing, the model mounted at the end of the sting experiences
dynamic oscillations due to unsteady flows that result in a bias error in the model attitude

measurement.

Young et. al {7] conducted an experimental study on the inertial model attitude sensor
response to a simulated dynamic environment in 1993 at the NTF. The experimental
study [7] clearly established that AOA bias error is due to centrifugal forces associated

with model vibration. For a single mode in simple harmonic motion, this is shown



schematically in Figure 1.3. The AOA package moves on a circular arc about a center of
rotation that is mode dependent. For a single mode, the motion of the AOA package can
be treated similar to that of a simple pendulum. The centrifugal acceleration will act
outward from the center of rotation and be equal to the tangential velocity squared
divided by the radius arm. During wind-off dynamic tests, centrifugal acceleration due to
model vibration created a bias error over an order of magnitude greater than the desired
device accuracy of 0.01 degree. The bias error was found to be dependent on the
vibration mode and amplitude. The study revealed the complexity of the problem when

multiple vibration modes were present involving both pitch and yaw motions.

Although the Reference 7 study was conducted at the NTF, the AOA measurement error
due to model dynamics is not unique to this wind tunnel or to cryogenic wind tunnels.
The problem exists anytime model attitude is being measured by an inertial device in the
presence of significant model system vibrations. The amount of error in the inertial
model attitude measurement is dependent on the model system dynamics (i.e. will vary

for each model system) and is very difficult to quantify during actual wind tunnel tests.

Space limitations in wind tunnel models require that the number of additional transducers
used to implement a correction be minimized. This is illustrated by the wind tunnel
model instrumentation cavity shown in Figure 1.4. Also, in a cryogenic facility, such as
the NTE, special AOA sensor packages [13] are required. The instrumentation must be

placed in a heated package to maintain the sensors and obtain accurate and calibrated
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measurements at extreme temperatures (-290°F). Past experience with accelerometers
placed outside of the heated instrumentation package has revealed problems ranging from
sensitivity shifts due to temperatures variations to complete signal loss. The extreme
temperatures conditions, limited interior model space, and stringent accuracy
requirements necessitate placing the additional transducers necessary for correction of the
inertial AOA sensor output in the heated instrumentation package. The centrifugal
acceleration not only affects the inertial AOA device but can, if amplitudes are
sufficiently high, affect the desired axial force or drag measurement accuracy. The effect
of dynamics on pressure measurements can be a factor but is not addressed in this

dissertation.

1.3 Literature Review

Previous analyses of wind tunnel model system dynamics were restricted to a planar
problem. Burt and Uselton [14] examined the effects of sting vibrations on measured
dynamic stability derivatives. The equations of motion were derived for model rigid body
motion in the pitch plane using Newton's second law. Billingsley [15] uses Lagrange's
equations to derive the equations of motion for a cantilevered sting-model system. Again,
the derivation is restricted to motion in the pitch plane. Young et. al [7] have shown that
model yaw vibration can result in an error in the measured pitch angle for a model-
mounted inertial angle of attack device. Therefore, an analytical model is required that
includes both pitch and yaw plane dynamics to better evaluate the effects of model

dynamics on the measured aerodynamic data.
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The first correction technique for model vibration induced errors in inertial wind tunnel
model attitude measurements was developed in 1984 by Peiter Fuijkschot of the National
Aerospace Laboratory in the Netherlands[16]. This time domain technique was
developed for one vibration mode in each the yaw and pitch plane. Two additional
accelerometers are used to measure the tangential accelerations due to the yaw and pitch
motion of the model. The tangential accelerations are integrated to obtain velocity,
squared, and divided by a scale factor to compensate for the effective radius of the
vibration mode. This signal is then added to the unfiltered AOA output to cancel the bias
term. The mode radius in the yaw and pitch plane is determined by tuning a potentiometer
while manually exciting the model in the yaw and pitch plane, respectively. A major
drawback is that this technique does not address the case where multiple yaw and pitch

modes are present.

Renewed interest in the effects of model vibrations on the measured aerodynamic
quantities was prompted by the 1993 study of Young et. al. [7]. Prior to this
investigation, only a single mode in the model pitch and yaw planes was considered. This
study showed the potential for multiple modes in each plane to participate. Several recent
studies have been conducted at NASA Langley Research Center to examine the effects of
model vibration on model attitude measurement devices [7, 8, 17, 18]. In addition,
analysis of the vibration effects on gravity sensing inclinometers is underway by

Fuijkschot [19, 20] of the National Aerospace Laboratory in the Netherlands.
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Frequency domain correction techniques have been proposed by Young et. al [7] and
Tcheng et. al [18]. The correction method of Young et. al is derived using an average
displacement of the model through one cycle of vibration. This method requires the
measurement of the natural frequencies and corresponding peak acceleration magnitudes
from the frequency spectra of the yaw and pitch accelerations. Young proposes that the
required scale factor, effective radius, be determined empirically during wind-off ground
vibration tests. The correction method of Tcheng [18] requires the measurement of the
natural frequencies from the frequency spectra of the tangential accelerations and the
second harmonic components from the frequency spectrum of the unfiltered AOA signal.
This technique is difficult to implement due to the participation of multiple modes and
the required data accuracy to measure small magnitudes at the second harmonic
frequency. Both techniques have implementation problems due to the required frequency
domain signal processing of random wind tunnel test data over short (1 second) data

acquisition periods.

Another method under development by Tripp [8] uses time and frequency domain
analyses to estimate and correct for the dynamic bias error. The proposed time and
frequency domain bias error correction algorithm is based on the bias term for a single
yaw mode being represented by the square of the velocity divided by the mode radius. A
sensitive correlation test between time series is provided by the cross spectral density
coherence function. Correlated spectral components common to both the unfiltered AOA
signal and square of the dynamic yaw or pitch measurement appear in the cross spectral

density coherence function. Other spectral components common to the auto spectra

13



which are not phase coherent, i.e. unsynchronized, tend to be removed from the cross
spectrum by averaging and canceled by normalization, and do not appear in the cross
spectral coherence function. The coherence function and cross spectrum thus provide a
means of detecting and quantifying AOA bias errors due to angular oscillation. The cross
spectral density coherence function is examined for spectral correlation within the AOA
passband and the corresponding modal frequencies are identified. The modal radius
corresponding to each natural frequency is estimated by a least squares fit of the integral-
squared yaw (or pitch) measurement to the dynamic AOA output. This requires a longer
data record initially (= 10 seconds) to obtain a good estimate of the mode radius. This
mode radius is then used as a constant for the remainder of the data points. A bandpass
filter about the modal frequency is used to isolate a particular mode. The resulting signal
is then numerically integrated and squared and divided by the scalar mode radius to give
the bias error associated with a particular mode. The correct AOA output is then found
by subtracting off the contributions from all of the modes shown to have spectral
correlation and low-pass filtering the result. In wind-off dynamic tests [8], this method
had implementation problems due to significant low frequency random disturbances in
the integral-squared yaw (or pitch) measurements which were absent in the AOA time

series.

After the need to compensate for multiple vibration modes was demonstrated at NASA

Langley Research Center [7,8,17], Fuijkshot extended his time domain correction

technique to compensate for multiple modes [19, 20] using Euclidean kinematics of a

14



solid body. This work was done in parallel with the proposed time domain "modal
correction method" that is the subject of this dissertation. For a given plane of motion,
Fuijkshot proposes measuring both the rotational rate and the velocity of the rigid model
and determining the correction term from the product of the two signals. The rotational
rate and velocity signals for the yaw (or pitch) plane will contain the contributions for all
modes acting in that plane. The radius for each of the modes will not need to be
determined explicitly. The correction terms for the pitch and yaw planes are then added
to the unfiltered AOA signal prior to filtering. The method is currently under evaluation
and has been verified for sinusoidal tests [20]. The velocity can be determined through
integration of an accelerometer signal. In application, the rotational rate has been
obtained by integrating the difference from two linear accelerometers attached to the
model fuselage, oriented in the yaw (or pitch) plane, divided by the accelerometer
separation distance. This assumes the accelerometers are connected by a rigid model
fuselage. This correction technique requires four additional transducers in order to
determine the rotational rate and velocity in the pitch and yaw planes. The limited
interior space in models and extreme temperature environments in some wind tunnels,
where heated instrumentation packages are required, may prohibit this number of
transducers. This method does not provide a means of checking the rigid-body model

assumptions upon which it is based.

In general, the proposed time domain corrections provide several advantages. First, time

domain signal processing can be applied to the random wind tunnel test data acquired

15



over short data sampling periods. Secondly, the inertial AOA package output can be
corrected for the dynamically induced errors to give an accurate time domain model
attitude signal. The measurement of time varying signals and analysis of this data is
becoming a more significant requirement for subsonic and transonic experimental
researchers[21]. The measurement of instantaneous and average values of model attitude

and correlation with measured model loads is gaining increased interest.

1.4 Solution Approach

The research is divided into the following four areas: examination of the effects of
models dynamics on aerodynamic data; development of a theoretical model; development
of a correction for model vibration induced errors in inertial wind tunnel model attitude

measurements; and experimental verification.

In Chapter 2, the significance of the problem is shown by examining the effects of model
dynamics on the measured drag force and corresponding drag coefficient. Errors
introduced by the centrifugal forces associated with model vibration are quantified. The
propagation of the angle of attack errors during the transformation of the measured forces

from the model body axes to the wind axes is also examined.

In Chapter 3, the governing equations of motion for a cantilevered wind tunnel model

system are derived in discrete form using Lagrange's equations. This formulation

describes both pitch and yaw plane dynamics. The equations of motion are solved using a
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modal analysis approach to obtain the generalized, modal, solution. Based on observed

behavior of wind tunnel model systems, the problem is simplified.

In Chapter 4, the theoretical model is used to develop a time domain correction method
for model vibration induced errors in inertial wind tunnel model attitude measurements.
The implementation of the proposed "modal correction method” using digital signal

processing techniques is also described.

In Chapter 5, the modal correction method is verified through a combination of wind-off
dynamic tests on two transport model systems and wind tunnel test data. The modal
correction method is applied to wind-off model dynamic response data for sinusoidal,
modulated sinusoidal and random shaker inputs in the pitch and yaw plane. In addition,
the modal correction method is applied to measured dynamic response data recorded

during wind tunnel testing of a transport model in the NTF.

In Chapter 6, the research results are summarized and recommendations for future work

are described.
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Chapter 2

EFFECTS OF MODEL DYNAMICS ON AERODYNAMIC DATA

2.1 Introduction

For wind tunnel data acquisition, Steinle and Stanewsky [12] recommend that samples of
data be taken over a time interval sufficient to average out the effects of dynamic
response and unsteady flow to establish the desired confidence interval. However, as
discussed by Buehrle and Young [17], the centrifugal acceleration created by model
vibration results in a bias error in the inertial wind tunnel model attitude measurement.
For wind-off sinusoidal model response, it is shown that the inertial angle of attack
measurement has a mean offset which cannot be removed by filtering or averaging.
Errors over an order of magnitude greater than the required device accuracy of 0.01° are

possible [7, 8].

In this chapter, the effect of model vibration on the force balance measurements is
quantified. The direct effect of the vibration induced centrifugal force on the accuracy of
the measured forces is examined. Typically, the forces and moments are measured by an
internally mounted strain-gage balance which has a coordinate system that is fixed to the
model. This data is transformed to obtain the desired lift and drag force components
using the measured model attitude. The propagation of the model attitude error during

the transformation process is also examined.
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2.2 Force Balance Measurements
Model vibration induced centrifugal forces result in errors being introduced into the

balance forces. The centrifugal force F_can be written
F_=mya_ 2.1)
where m,, is the model mass and a, is the total centrifugal acceleration. It is anticipated

that the centrifugal force acting on the model will be small. For the servo accelerometer,
a centrifugal acceleration of .00175 g's corresponds to a model attitude error of 0.1
degrees, which is 10 times the required device accuracy. This same centrifugal
acceleration will result in only a 0.26 pound centrifugal force for a model weighing 150
pounds. For the high dynamic pressure wind tunnel tests that produce significant model

dynamics, this would result in a drag coefficient error less than the required accuracy.

2.3 Transformation of Balance Forces

A more significant error in the measured forces may occur due to errors in the measured
model attitude. The propagation of the model attitude error into the measured drag force
was described by Owen et. al. [22]. The strain gage balance forces are measured in the
model body axes, which are fixed to the model, and transformed to the lift and drag force
components using the measured model attitude. Figure 2.1 shows the relevant forces and
coordinate axes. The axial force, Fa, and normal force, Fn, are the balance forces
measured relative to the body axes, (xg, zg). The lift force, Fy, and drag force, Fp, are
defined relative to the wind axes, (x ,z), which have one axis parallel to the flow

direction. The measured model attitude, o, defines the transformation between the two
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Figure 2.1 Aerodynamic forces and model coordinate axes.
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coordinate systems. The lift and drag forces can be written

F; = Fp cos(o) — Fy sin(o) (2.2a)

Fp = F4 cos(ou) + F sin(o) (2.2b)
If the model attitude has an error, g, the lift and drag forces can be written

F; = Fy cos(o. +€)— Fysin(o +€) (2.3a)

Fp=Fjcos(o +€)+ Fy sin{o +€) (2.3b)
The errors in the lift and drag forces due to the model attitude error, €, are defined by the
differences of Equations 2.2 and 2.3.

AF; = Fp(cos(o. +€)—cos(o)) - F4(sin(ot + € )—sin(a)) (2.4a)

AFp = Fp(cos(o. +€ ) —cos(a)) + Fyy (sin(ot + € ) —sin(ct ) (2.4b)
Expanding the trigonometric expressions and applying small angle assumptions for g,

AF; =—€(Fy sin(at)+ F4 cos(at)) (2.53)

AFp =€ (Fy cos(o )~ Fy sin(a ) (2.5b)
Substituting from Equation 2.2 for the terms in parentheses results in

AF; = —€Fp (2.6a)

AFp =¢€Fy. (2.6b)

The aerodynamic forces are expressed in coefficient form as

Fr
C; =—= and Cp=—"= 2.7
L g S an D ( )

where Cp is the coefficient of lift, Cp is the coefficient of drag, q.. is the dynamic

pressure, and S is the reference area of the model.
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Rewriting Equation 2.6 in coefficient form gives
AC; =—-€Cp (2.8a)

ACp=¢€Cy. (2.8b)

As discussed in Chapter 1, the accuracy requirements [12] for lift and drag measurements
for transport-type aircraft in the high speed regime are: Lift Coefficient, AC; =001 ;
Drag Coefficient, ACp = 0.0001. Except for conditions near zero lift, the coefficient of
drag is significantly less than the coefficient of lift [23]. Therefore, the error in drag
coefficient will be more critical with regard to its required measurement accuracy.
Assuming the lift coefficient can be represented as a linear function of model attitude,
gives
Cp=Cr, o +Constant (2.9

where Cp 1s the slope of the lift coefficient versus model attitude plot. Substituting the

results of Equation 2.9 into Equation 2.8b gives
ACp = {55 €(Cp,, 0 + Constant) (2.10)

where o and € are expressed in degrees. The slope of the lift coefficient versus model

attitude plot for several characteristic wing shapes range from 0.05 to 0.1 per degree [23].

Using the most conservative, lower, value of C; , =005per degree, the error in drag

coefficient versus model attitude is plotted for several values of model attitude error in
Figure 2.2. For this plot, the constant term in Equation 2.10 is set to zero. For a non-
zero constant term the lines will be shifted, however, the basic trends will be consistent

with those shown.
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Figure 2.2 Influence of angle of attack error on drag coefficient for Cp , =0.05.
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As can be seen from Figure 2.2, significant errors in drag coefficient can occur due to the
propagation of the errors in the model attitude measurement. ~Model attitude errors
equivalent to those measured in wind-off dynamic tests (€20.1°) [7, 8] would result in an
error in the drag coefficient that is an order of magnitude greater than the required

accuracy at high angles of attack.

24



Chapter 3

THEORETICAL FORMULATION

3.1 Introduction

In this chapter, the equations of motion for a cantilevered wind tunnel model system are
derived using Lagrange's Equations [24- 26]. The Lagrange method provides a
generalized systematic energy approach for defining the equations of motion in any
convenient coordinate system. The resulting equations of motion are formulated in terms
of the generalized, modal, coordinates. Based on observed behavior of the model system
during wind tunnel tests, the analytical model is simplified. This simplified model

provides the basis for development of the modal correction method in Chapter 4.

3.2 Dynamic Equations of Motion
A lumped mass model will be used to represent the wind tunnel model and its support
system. This work extends the planar analysis of Billingsley [15] to include both pitch

and yaw dynamics of the sting-balance-model system.

In order to represent the model system during pitch-pause wind tunnel testing, three
coordinate systems are defined in Figure 3.1. The coordinate system (X, y, z) is the
inertial coordinate system with the x-axis parallel to the wind direction. The coordinate
system (Xs, s, Zs) is fixed to the undeflected sting axis and has its origin at the arc sector
center of rotation. Recall from Chapter 1, that the arc sector is the movable portion of the

model support system that provides the pitch adjustment for the model. The arc sector is

25



9C

"SUISISAS 2JBUIPIOOD OUAIAJOY '€ 2an31g

uonoalp
PUIM
Buns
palogjiapun

uonejol
JO Jajuao
10}03S 21y



designed such that its center of rotation is at the model, so that changing the model pitch
angle does not translate the model to a different position relative to the wind tunnel test
section. The coordinate system (Xs, ¥s, Zs) can be defined by the location of its origin (X0,
V50, Zs0) relative to the inertial coordinate system and the pitch angle (o5 ) . The body axes
(XBi» YBi» ZBi) are fixed to the ith concentrated mass. The position and orientation of the

body axes for the ith concentrated mass relative to the undeflected sting axes are defined

by the translations (x;, y;, zi) and rotations (Y;, &, Bi).

In the pitch-pause method of wind tunnel testing, the model is pitched to a desired angle
(0% ) and paused to establish "steady-state" conditions. This results in:

Xg0 = Y50 =250 =05 =0 (3.1
where the "+" denotes the derivative with respect to time. The time varying components
representing the motion of the ith mass are the translations (X;, yi, i) and rotations (i, 04,

B;) relative to the undeflected sting. The generalized coordinates describing the motion of

the cantilevered sting-balance-model system can be written:

{a} ={x1 nou Yr o Bt oo Xp Yn o Zn Y @y Bn}T (3.2)

where n is the number of lumped masses used to represent the wind tunnel model system.
The rotation angles (Y;, &, Bi) induced by inertial and aerodynamic loading are small.
Therefore, in the subsequent derivations, small angle approximations (i.e., sin(®t) = o ;

cos(o ) = 1) can be used and higher order terms can be neglected.
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3.2.1 Lagrange's Equations

For a lumped mass model, Lagrange's Equations [26] can be written as:

4[9T —a—T+-a£+a—U—Q- for i=l,..,N (3.3)
dr\3g; | oq; 34; og; '

where:
D = energy dissipation function

n = number of lumped masses used to represent the wind tunnel model system
N = 6*n = number of degrees of freedom

g; = ith generalized coordinate

g; = derivative of ith generalized coordinate with respect to time

Q; = non-conservative generalized applied force (or moment) associated with q;
T = kinetic energy of the system

U = potential energy of the system

3.2.2 Kinetic Energy

The kinetic energy of the system can be written [26]:

N N o
X X myqiq; (3.4)
i=1 j=1

T=

B =

where the my; are inertia coefficients. For small oscillations about the equilibrium, the

inertia coefficients are constants and the kinetic energy is a function of {q} only. The

mass matrix is symmetric, i.e., my=mj. Since the kinetic energy is not a function of {q},

oT
0 0 (3.5)
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Taking the derivative of the kinetic energy with respect to the time derivative of the ith

generalized coordinate gives:

a—T—gm' 3.6
;o1 04 (3.6)

The time derivative of Equation 3.6 is:

d{oT | ¥

3.2.3 Potential Energy

For the cantilevered wind tunnel model, the potential energy is equal to the strain energy
stored in the sting-model system. A detailed derivation of the strain energy is given by
Fung [27]. The potential energy can be written in terms of the stiffness influence

coefficients as:

N N
2 X kijgiq; (3.8)
i=1j=1

U=

[SYEN

where the stiffness influence coefficient, k;;, is the force required at point (i) due to a unit
deflection at point (j) with all other points held fixed. The stiffness influence coefficients

are symmetric, i.e., k;; =k ;. Taking the derivative of the potential energy function with

respect to the generalized coordinate ( qi ) gives:

ou X
— =3 kg 9
aq; E] i G
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3.2.4 Energy Dissipation Function
For the case of viscous damping, a dissipation function, D, analogous to the potential
energy function can be defined [26].

NN

2 X cigig (3.10)
i=1j=1

D=

N [—

where the damping coefficients, c;j , are symmetric, i.e., ¢jj =Cji. Taking the derivative of
the dissipation function with respect to the time derivative of the ith generalized

coordinate gives:

N
==Y g (3.1
oq; =1 U7

3.2.5 Generalized Forces
The primary generalized forces are the unsteady aerodynamic loads. The aerodynamic
loads will be modeled using a quasi-steady approximation [15]. The generalized
aerodynamic forces associated with the translation degrees of freedom are modeled as:
OF; =4-5;CF, (3.12)
where, .. is the dynamic pressure and S; is the characteristic area. The coefficient Cri
will be assumed linear and is a function of the model attitude. Similarly, the generalized
aerodynamic moments associated with the rotational degrees of freedom are modeled as:
OM; =9=5idiCpm; (3.13)
where d, is a characteristic length and the coefficient Cy; is assumed to be a linear

function of model! attitude.
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3.2.6 Equations of Motion
The equations of motion for the ith lumped mass can be obtained by substituting the
results from Equations 3.5, 3.7, 3.9, 3.11, 3.12 and 3.13 into Equation 3.3. In matrix

form this yields:
[mK4}+[cKq}+ (K Kq} =10} (3.14)

where,

T
{4} ={xl yioa Y1 &y Bi - Xn Yn Zn Yn Oy ﬁn}
[C] is a square matrix of the damping coefficients, c;;
[K] is a square matrix of the stiffness coefficients, k;;

[M] is a square matrix of the inertia coefficients, my;

{Q} is a vector containing the generalized forces, Q;

3.3 Modal Analysis
The modal analysis technique [24, 28] will be used to solve for the dynamic response of

the multiple degree of freedom system described by Equation 3.14 with initial conditions
{q(0)}={qo} and {4(0)}={gp}. The modal analysis technique is based on the

transformation of the coupled equations of motion represented by Equation 3.14 into an

independent set of equations using the normal modes of the system.

In the modal analysis technique, the first step is to obtain the eigenvalues and

eigenvectors associated with the mass and stiffness matrices of the system. Numerical
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methods for solving the eigenvalue problem are discussed in References 21, 23 and 26.
Another approach is to obtain the eigenvalues and eigenvectors through experimental
modal analysis [29, 30]. Once the natural frequencies and mode shapes are obtained, the

solution to the eigenvalue problem can be written as:
[MI¥] 02 | = [K]¥] (3.15)
where, [¥] is the modal or eigenvector matrix
[\0)2.] is a diagonal matrix of the natural frequencies, @ ,squared
Normalizing the modal matrix with respect to the mass matrix yields:
(@ (M@ =] 1] (3.16a)
[0 (K1) =] 0?.] (3.16b)
where, [®] is the mass normalized modal or eigenvector matrix, and

['1.]is the identity matrix

The transformation from the generalized coordinates, {q}, to the modal coordinates, {p},

can be written:
N
{a}=[epn}= §1{¢ Y (D) 3.17)

where, {¢ }r is the mass normalized modal vector for mode r. Substituting Equation

3.17 into Equation 3.14, and premultiplying by [<D]T yields,

{p}+ o [clof p}+[ w2 [ p}=[1" {0} (3.18)
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Assuming the damping is a linear combination of the mass and stiffness matrices, the

transformation will also diagonalize the damping matrix.
@) [cl@)=[ 2¢o. | (3.19)

where the modal damping for mode r can be written:

1
20,

¢, ==—{o} (cle}, (3.20)

Substituting Equation 3.19 into 3.18 results in
{p}+[ 200 {p}+[ 02 Jip}={0} (3.21)

where

{o'}=[o1" {0} (3.22)

The N independent equations corresponding to Equation 3.21 can be written as

Br(n+28,0, p(0+0l p(H=0;1), =12,.,N (3.23)
This is the form of a single degree of freedom system with viscous damping. Using the

transformation equation (3.17), the initial conditions can be written

{a@}=[e{p0)} and {40)}= @ p(0)} (3.24)
Premultiplying these equations by [(D]T[M ] and solving for the modal initial conditions
gives

py(0)={6} [MHq(0)} and p,(0)={o } [M{g(0)}, forr=1,2, .., N (3.25)
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The solution to Equation 3.23 can be obtained using the Laplace transform method [24].
This results in

1

t
pr(t)=— J0p)e b @ sinwy (r—1)dt

r

pr(®+8,0,p,(0)
Q)dr

+e-c ror! p,(O)cos((x)drt)+ sin(u)drt)] (3.26)

where @y = m,\f(l - ,2) is the damped natural frequency for mode r.

For a given set of generalized forces and initial conditions, Equations 3.22, 3.25 and 3.26
can be used to solve for the modal coordinates, {p}. The solution in terms of the
generalized coordinates, {q}, can then be found from Equation 3.17. The problem is
now in generalized form and can be used to estimate and correct for model vibration
induced centrifugal accelerations. However, the problem can be simplified as developed

in the following section.

3.4 Simplified Model

Once the natural frequencies and mode shapes have been obtained, the dynamic model of
the sting-model system can be simplified based on behavior observed during wind tunnel
testing. The primary dynamic components affecting the wind tunnel model
instrumentation are in the model pitch and yaw planes [7, 8]. Since the inertial angle of

attack device has its sensitive axis parallel to the longitudinal axis of the model, the
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device is not sensitive to roll motions about this axis. Also, the effects of axial modes on
the inertial angle of attack device can be removed through filtering. Therefore, only the

pitch and yaw plane motions will be considered in subsequent derivations.

Figures 3.2 and 3.3 show measured mode shapes of a high speed commercial transport
model in the National Transonic Facility (NTF). These mode shapes demonstrate several
important characteristics common to models tested in the NTF. The lower frequency
modes (<50 Hz) of the model system are characterized by rigid body motion of the model
on the more flexible sting-balance combination. The first two modes are associated with
sting bending motion in the pitch and yaw plane. In order to achieve the desired
measurement accuracy for the "steady-state" aerodynamic loads, the force balance is
relatively flexible as compared to the model énd sting. The strain gage balance systems
used in the NTF [31] are designed with flexures that separate the loads into its planar
components with minimal interactions. This results in predominantly pitch or yaw plane
motion of the model for the lower frequency modes of the system. For a given mode, the
rigid-body model motion can be defined by a translation y or z along with a

corresponding rotation B or a (see Figures 3.2 and 3.3).

3.4.1 Two Degree of Freedom Example
A two degree of freedom example will be used to define some useful properties
associated with the planar motion of the "rigid" model. The modal characteristics of the

two degree of freedom system shown in Figure 3.4 will be examined. This is similar to an
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c.g.—/ Balance moment
K
B center

Figure 3.4 Two degree of freedom model.
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example for vehicle suspension given by Thompson [32]. In this example, the translation
and rotation coordinates at the balance moment center will be used in defining the model
motion. Using the Lagrange Method, the equations of motion are derived. For small

angles, the equations of motion are

My, _mm'dcg/bc 2}+{k3 O:HZ}_{ -1 }F(t) 327)
_mm'dcg/bc I)'bc o 0 krjlo - dr/pe G

where, my, is the model mass, degne is the distance from the mass center to the balance
center; dpne is the distance from the force to the balance center; Iy e is the inertia about
the balance center; kg is the bending stiffness; kr is the torsional stiffness; z and o are the

displacement and rotation from the equilibrium position; and F(t) is the applied force.

The main interest is in the form of the mode shapes. The eigenvalue problem

corresponding to Equation 3.27 can be written

kg 0|z m My -degrpe || 2
[B ]{ }=m2[ i’ moesine (3.28)
0 krllo My, deg/be Iy,. o

Based on measured weight, physical dimensions, and natural frequencies of a typical
transport model system, the following constants were determined.

mp=0.3313 pound-secondzlinch

I he=19.51 inch-pound-se:cond2

degne= 3 inches

kg = 1308 pound/inch

kt = 277089 inch-pound
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Substituting these values into Equation 3.28, and solving the eigenvalue problem yields

oy ~1513
=—= 3 Hz - = .
fi == =938Hz {0}, {0.0 A5 (3.292)
_® _ . _
fo= 5 =267Hz ; {o},= {0_2955 (3.29b)

The mode shapes are depicted graphically in Figure 3.5. Note that for each mode there is
a node (point of zero motion) about which the rigid body model rotates. The position of
this node is defined by the ratio of the translation and rotation degrees of freedom.

Scaling the modes to unit rotation gives

364 -

{o}, =0.0415{ 1 }:0.0415{ f'} (3.30a)
582 -

{01, =0.2955{ | }=0.2955{ ‘1)2} (3.30b)

where the ith mode radius, p; , is defined as the ratio of the translation and rotation mode
shape coefficients with the modal vector scaled to unit rotation. This yields a physical
interpretation of the mode radius as the distance from the node to the reference point on
the model with the positive direction defined by the model x-axis. For this example, the
mode radius values are p; = 36.4 inches, and p, = -5.82 inches. The radius by definition
can be positive or negative based on the mode shape. The effect of the sign of the radius

will be discussed in Chapter 5.
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Figure 3.5 Mode shapes for two degree of freedom example.
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3.4.2 Extension to Multiple Degree of Freedom System
The results of the two degree of freedom example can be used to simplify the
transformation Equation 3.17. Recognizing the planar characteristics of the model

response for the lower frequency modes, Equation 3.17 can be expanded as

r#ry,rp

lant=lXp}=2lo}, pry )+ X0}, P00+ I {0k p(®) (3.31)
Ty "p

The low frequency yaw modes denoted by r, are characterized by rigid body motion of the

model. Letting {c}} be the subset of the generalized coordinates required to represent the

model fuselage, yields:

0 ) 0
q)y —pry
R 0 0
jj =2 =X ‘ =2 > 3.32
{al, ry{¢},yp,y(t) Sof 0=, pry () (332)
0 0
N’B,,y !

The coordinates shown represent the x, y, z, ¥, &, and P degrees of freedom for a point on

the "rigid" model fuselage.

Similarly, for the low frequency pitch plane modes, rp , the rigid body motion of the

model is approximated by

0 p

0
0
A =3{s 3l 5o, 1P| 3.33
{al, rp{¢}rp”’P(’) z Pry =200, 177 1p, () (333
1
- 0
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For a given mode, the rotation and translation degrees of freedom in the predominant
plane of motion are related by the mode radius. The mode radius is defined as the ratio of
the translation and rotation mode shape coefficients in the predominant plane of motion
with the modal vector scaled to unit rotation. This simplified form of the solution, given
by Equations 3.32 and 3.33, will be used to develop a correction for vibration induced

errors in Chapter 4.
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Chapter 4

MODEL ATTITUDE BIAS ERROR CORRECTION

4.1 Introduction

In this chapter, the theoretical model is used to develop the proposed time domain "modal
correction method” for model vibration induced errors in inertial wind tunnel model
attitude measurements. The modal correction theory and implementation procedure are
described. The proposed modal correction method extends the early work of Fuijkschot
[16] to compensate for multiple yaw and pitch vibration modes. This was the first time
domain correction technique developed to compensate for multiple modes of vibration in
the model pitch and yaw planes. A time domain correction is required due to the short
data acquisition periods (1 second) for the random wind tunnel data. This is also
important in order to meet future testing needs [21] involving the correlation of
instantaneous changes in model attitude and force balance data . The modal correction
method also minimizes the number of additional transducers required by using measured
modal properties of the wind tunnel model system. This is especially critical for models
with limited interior space and in wind tunnels that have extreme temperature conditions

where heated instrumentation packages are required.

Prior to the modal correction technique, the model attitude corrections were based on the
assumption that the instrumentation package moved on a circular arc with no detailed

analysis of the underlying system dynamics. The theoretical and experimental modal



analyses performed during the development of the modal correction technique provided
valuable insight into the dynamic behavior of cantilevered wind tunnel model systems.
Observation of the relevant animated mode shapes revealed that the model moved as a
rigid body on the more flexible sting-balance combination. The assumption of rigid

body model motion is critical to the development of multi-mode time domain correction

techniques.

4.2 Modal Correction Theory

The primary generalized forces are associated with the "quasi-steady” aerodynamic loads
acting on the model. Unsteady flow in the wind tunnel results in a broadband random
input to the model system. The input for this process is not directly known or measured.
For the metallic sting-model structure, the damping is low and the system acts as a
narrow band filter passing energy (or responding) at the natural frequencies of the model
system [33]. If the modes are well separated and lightly damped, the response motion at a

natural frequency, @, , will be described by the corresponding mode shape, {o }r, with

residual effects of other modes assumed negligible.

45



The physics of the problem can now be studied by considering the response of a single

mode as depicted in Figure 4.1. Using Equation 3.32, the response for a single yaw mode

in simple harmonic motion can be written

~

{ami=) Py sin(@, 1) (.1)

0
Oy
0 3 = ¥
0 pry(t)_q)Bry
0

-0 oo P ©

™ R=L Ne X

9B ) S

ry ry

where P,y is a scalar constant related to the amplitude of motion. The reference
coordinates on the rigid fuselage will be taken at the location of the on-board inertial
angle of attack (AOA) package. The translation and rotation of the AOA package can

then be written

yr, (=Y, sin(@, 1) (4.2)

(4.3)

Bry(t)-—— yry(t)

ry
where Y,y is a constant representing the amplitude of motion. Taking the derivative with
respect to time gives
y

y,y = V,y cos(w,yt) where V,y = Y,y ®, (4.4)

B, (=" (4.5)

Vr, (£)
y
Ty
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Figure 4.1 Harmonic motion of model at natural frequency of ®y.
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The corresponding tangential and normal acceleration components, a, and a,,, are:

a,(t)= Yry (t)= A,y sm((o,y t); where A,y = —V,y o, (4.6)
o yr, 2(0)
an(t)= B, (D3, ()= (4.7)
“Hr
)V
Substituting for ji,y from Equation 4.4 gives
v, 2 v, 2
ry 2 ry
a,(ty=— cos“(®, t)=-— (1+cos(2w, 1)) (4.8)
ry y 2Pry Y

Recall from Chapter 1 that the on-board inertial AOA package uses a servo-accelerometer
with its sensitive axis parallel to the longitudinal axis of the model. The vibration
induced normal acceleration results in the AOA package sensing a centrifugal
acceleration coincident with its sensitive axis. The AOA package output prior to filtering,

Aypf , becomes:

Aung ()= gsina+ B, (D3, (H—ax(D) 4.9)
The first term on the right hand side of the equation is the gravitational acceleration due
to the true model attitude, o, relative to the local vertical. The second term is the

centrifugal acceleration (from Equation 4.7) caused by the model yaw motion. The third

term represent the accelerations, a,(t) , resulting from flow induced longitudinal model

vibrations (typically greater than 50 Hz). In this equation, the positive output for the

AOA package corresponds to a positive change in angle of attack. Using the modal
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radius to relate the translation and rotation degrees of freedom (Equation 4.5) of the rigid

model, the equation can be written

.2
Yry ()

Aynf ()= gsino - —a, (1) (4.10)

Ty
Expanding y ry and using the trigonometric relations from Equation 4.8 gives

1% 2
Aunf(t)=gsina—2;) (1+cos(20,, 1) =a (1) (4.11)
r
y

This form of the equation shows that the centrifugal acceleration for sinusoidal model
response results in the angle of attack sensor having a constant, bias, term and a harmonic
component at twice the natural frequency. The harmonic component and the longitudinal
acceleration, a,(r), can be removed by filtering. Lowpass filtering (0.4 Hz cut-off
frequency) the AOA signal yields

2
V,y
2p

Ap = gsino — 4.12)

Ty

The filtered AOA signal, Aﬁl, has a bias error due to model vibration that cannot be
removed by filtering or averaging. From Equation 4.12, it is evident that in order to
remove the bias error, a correction method that compensates for both the amplitude of

vibration, ny , and the mode shape, p ry” is required.
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Model pitch vibration causes a similar bias error term, where the tangential velocity is
acting in the pitch plane. If the vibration response is composed of multiple yaw and pitch

modes, the total bias error will be a linear summation of the error contributions for the m

modes.
. n v’
Ag = gsino, —r)ilzpr (4.13)
Or, in terms of the peak acceleration, from Equation 4.6,
. m A2
Ag = gsina _r§12(0;2p, (4.14)

The above discussion is based on the case of continuous sinusoidal model motion. In the
wind tunnel, the data is random in nature. This results in a time varying bias error that is
dependent on the number of modes participating and the amplitudes of motion for those
modes. In order to compensate for a time varying bias errors, a time domain correction

appears to be the most suitable.

The proposed time domain modal correction technique is based on the single mode model
given by Equation 4.10. Assuming the model system behaves linearly, the total bias error
will be a linear superposition of the individual mode effects. This can be written as

N .2
3y v, (1)

r=1 r

Aynf (D)= gsina — —a,(t) (4.15)
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where v, (¢) is the velocity (pitch or yaw plane) at the AOA location for mode r and p, is

the corresponding mode radius. For m modes, the bias error estimate, ag(t), can be

written
m y2(;
ag(t)= @ (4.16)
r=l Pr
Adding the bias error estimate to the unfiltered AOA output yields
m 2 t N 2 ¢
Ay (D+ )Y Vi )=gsin(x - 2 L(—)—ax(t) (4.17)
r=1 Pr r=m+1 Pr

The longitudinal accelerations, a,(t), can be removed through low pass filtering. The
experimental data in Chapter 5 will show the majority of the dynamic response in the
pitch and yaw plane will be concentrated in the first four to six modes. Therefore, the
effects of the higher frequency modes (denoted by r=m+l1 to N) will be assumed

negligible. An estimate of the true model attitude is given by

m 2
LPF{Au,,f(t)+ o (’)J
1 r=1 pr
(4.18)

4

o (t) = sin~

where the accelerations are measured in g's and LPF designates a low pass filter with a

cut-off frequency of 0.4 Hertz.

In the modal correction technique, natural frequencies, ®, , and mode shapes, {o }r must

first be determined. This can be done using analytical or experimental techniques. In

most cases, a detailed analytical model is not available. Experimental modal analysis
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techniques [29, 30] have been used to determine the required natural frequencies, ®, ,

and mode shapes, {0 }r, of the cantilevered model systems. Recall from Chapter 3 that

the low frequency "rigid-model” modes of interest have predominant motion in the pitch
or yaw plane due to the model-balance design. This is shown graphically in Figures 4.2
and 4.3. For a given mode, the radius is estimated by assuming the fuselage moves as a
rigid body and using a least square linear regression fit of the fuselage mode shape
coefficients to determine an effective point of rotation (node). A vibration mode’s
effective radius is estimated as the distance from the mode’s point of rotation to the

inertial AOA sensor location in the model fuselage.

The rigid body assumption used in the mode radius estimation appears to be satisfactory
for the low frequency (<50 Hz) modes that are being evaluated. The accuracy of the rigid
body assumption can be assessed using the correlation coefficient for the linear regression
fit of the fuselage mode shape coefficients. For a linear regression fit of a yaw plane
mode (see Figure 4.2), the line estimate, y;, is defined by

yi=ax;+b (4.19)

The correlation coefficient [34] is defined as

Sy TxXy
CC, = L - (4.20)
52 E s o (2))
n n
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The correlation coefficient is always between -1 and +1. For values close to zero, there is
no linear relationship. For values near %1, there is a very strong linear relationship. In
Chapter 5, the correlation coefficient is used to assess the linear regression fit of the

measured fuselage mode shape coefficients.

A second assumption is that the mode shapes do not change significantly under the wind
tunnel test conditions. This enables wind-off estimates of the mode effective radii to be
used for correction of the model attitude measurement during wind tunnel testing. In
Appendix A, the effect of aerodynamic forces on the measured modal radius were
evaluated using a finite element model of a cantilevered wind tunnel model system. The
acrodynamic forces were applied to generate a prestressed model and then the
eigensolution was performed for this prestressed loading condition. For the largest
aerodynamic forces measured on a representative transport model in the National
Transonic Facility, the predicted shifts in the modal radius were less than 4%, which is

negligible.

4.3 Modal Correction Implementation

Once the effective radius and natural frequency are obtained for each mode of interest, the
next step in the modal correction technique is the on-line measurement of the unfiltered
AOA signal, and the lateral and normal accelerations at the AOA location. Due to the

model attitude accuracy requirements ( £0.01° over a range of £20° ), a 16-bit analog-to
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digital converter is required for the data acquisition system. Once the data is acquired,

the digitized measurements are processed off-line using MATLAB® [35].

A flow chart of the data analysis routine is shown in Figure 4.4. The lateral and normal
acceleration measurements are numerically integrated using the trapezoidal rule [36] and
scaled to obtain the lateral and normal velocity, respectively. The velocity signals are
squared using array, or element by element, multiplication. For each lateral mode of
interest, a linear phase finite impulse response filter is used to define a passband about the
natural frequency. This isolates the velocity squared components of the individual
modes. The filters are applied in both the forward and reverse directions to obtain zero-
phase distortion and double the filter order. This is critical for a time domain correction
where the phase relationship of the unfiltered AOA signal and the lateral and normal
dynamic response must be maintained. The squared velocity components for each mode
are divided by their corresponding mode radius and then combined using linear
superposition to give the estimated bias error due to lateral dynamics. This procedure is
then repeated for the normal, or pitch, modes to determine the bias error due to pitch
dynamics. The errors due to the lateral and pitch dynamics are then combined using
linear superposition to yield the total bias error. The bias estimate is then added to the
unfiltered AOA and the result is filtered with a 0.4 Hz lowpass filter as described by
Equation 4.18. This gives a corrected time varying mode! attitude signal that can be used

to determine the instantaneous or mean angle of attack over the data acquisition period.
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Chapter 5

EXPERIMENTAL VERIFICATION

5.1 Introduction

In this chapter, the modal correction method is verified through a combination of wind-
off dynamic tests on two transport model systems and wind tunnel test data. The modal
correction method is applied to wind-off model dynamic response data to compensate for
model vibration induced errors in the inertial model attitude measurement for defined
shaker inputs in the pitch and yaw plane. In addition, the modal correction method is
applied to measured dynamic response data recorded during wind tunnel testing of a high

speed transport model in the National Transonic Facility (NTF).

5.2 Wind-off Dynamic Response Tests
This section will describe the test setup and results of wind-off dynamic response tests on
two transport models [7, 8]. The modal correction method is validated for sinusoidal,

modulated sinusoidal and random inputs to the model in the pitch and yaw plane.

5.2.1 Test Setup and Procedure

Wind-off dynamic response tests were conducted on two transport models [7, 8] in a
model assembly bay at the National Transonic Facility. The test setup for the high speed
transport is shown in Figure 5.1. The mounting consists of a "rigidly" supported
cantilever sting that is positioned by a pitch-roll-translation mechanism. The model is

attached to the sting through a six component strain gage balance.
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The model was instrumented with an inertial AOA package [13] maintained at a constant
temperature of 160°F. The signal conditioner for the AOA package provides both an
unfiltered, "dynamic", 0 to 300 Hz bandwidth signal, and filtered, "static", O to 0.4 Hz
bandwidth signal. Two miniature accelerometers were installed on the face of the AOA
package to measure yaw and pitch motions. In addition, accelerometers were installed at
several locations on the model fuselage and sting to measure the dynamic response and

natural mode characteristics.

An experimental modal analysis was performed on the model systems. Frequency
response function data were acquired for point force excitation and transferred to a
personal computer. The STAR® [36] modal analysis software was used to determine the
modal parameters from the measured frequency response functions. A least square fit of
the fuselage mode shape coefficients was used to estimate the mode radius and

corresponding correlation coefficient (see Chapter 4).

For the dynamic response tests, an electrodynamic shaker was used to excite the model
system through a single point force linkage as shown in Figure 5.2. Due to the desired
high vibration amplitudes, the model surface was protected with tape and safety wire was
used in case the glue attaching the force mounting block failed during testing. The
excitation was applied in the pitch and yaw planes at the model fuselage hard points.
Sine, modulated sine and band limited random shaker input were used. A Hewlett
Packard (HP) 3566A dynamic signal analyzer was used to provide the shaker stimulus

and record the shaker force input, model force balance outputs, AOA static and dynamic
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outputs, and model accelerations. This system was used to monitor the model yaw and
pitch moments which established the dynamic test conditions for acquiring model attitude
measurements. Data was also recorded using a 16-bit Analog to Digital Converter (ADC)

board in a personal computer.

The model was set at a prescribed angle of attack under static conditions. The model
system natural frequencies were identified using sine sweep excitation in the pitch and
yaw planes. For each natural frequency of interest, a sinusoidal forced response test was
conducted by controlling the shaker input amplitude to provide a defined peak to peak
pitch or yaw moment on the model force balance. The control test variables were pitch
moment for modes that had predominantly pitch motion, and yaw moment for modes that
had predominantly yaw motion. The model attitude was measured at a series of moment
amplitude levels for sinusoidal excitation at a prescribed natural frequency of the model

system.

In addition to the sinusoidal forced response tests, the high speed transport model
dynamic response was measured for modulated sine and random excitation. The
modulated sine and random excitations and responses are more representative of the
model dynamics observed in actual wind tunnel tests. The majority of the modulated
sine tests were conducted with a 0.25 Hz modulation of the first natural frequency in the
pitch and yaw planes. In each case, the inertial AOA package was used to measure the

model attitude for a series of moment amplitude levels.
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5.2.2 Commercial Transport Model Test Results

During wind tunnel tests, the commercial transport model had significant yaw vibrations
at 14 Hertz. Discrepancies in the aerodynamic data provided the stimulus for the
investigation of the AOA device [7] and its sensitivity to model vibrations. The AOA
investigation concentrated on the first four modes. An experimental modal analysis was
conducted on the model system and the results are tabulated in Table 5.1. Figures 5.3 and
5.4 show characteristic yaw plane modes described by sting bending and balance rotation.
The mode radii and corresponding correlation coefficients are also listed in the table.
Recall from Chapter 4 that correlation coefficients near +1 indicate a very strong linear
relationship. The correlation coefficient for the least square fit of the fuselage mode shape
coefficients shows the appropriateness of the linear regression fit and validates the rigid

body model assumption for the tabulated modes.

Table 5.1

Modal Parameters for Commercial Transport Model

Mode | Frequency | Damping | Radius Corr. Mode Description
No. (Hz) (%) (Inch) Coeff.
1 10.3 1.01 38.2 9998 | Sting Bending-Yaw Plane
2 11.2 1.78 70.5 9971 | Sting Bending-Pitch Plane
3 14.4 0.46 7.05 -.9973 | Model Yaw on Balance
4 16.5 0.59 12.0 .9998 | Model Pitch on Balance
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For the AOA investigation, the model system was locked at near zero degree angle of
attack under static conditions. Single frequency forced response tests were conducted by
controlling the shaker input to provide a defined peak to peak pitch or yaw moment on
the model force balance. The test variable was yaw moment for modes that had
predominantly yaw motion, and pitch moment for modes that had predominantly pitch
motion. The AOA response data and model accelerations were recorded for several
morment levels. This data was transferred to the MATLAB® [35] program for application
of the modal correction technique. The measured mean AOA output, estimated bias, and
corrected mean AOA output, after application of the modal correction technique, are
shown versus balance moment in Figures 5.5 through 5.8. Recall that for sinusoidal
input, the model vibration creates a bias error or offset in the mean value. After
application of the modal correction technique, the error is reduced to the AOA device
accuracy of +0.01 degrees for all measurements except the second pitch mode. For this

case, an order of magnitude reduction is obtained.

The accuracy of the correction for the pitch axis tests may be improved by locating the
accelerometers adjacent to or inside the heated AOA package. The pitch plane
accelerometer on the face of the AOA package failed early in the test. A triax set of
accelerometers located externally on the fuselage upper surface was subsequently used to

obtain the off-axis accelerations required for the modal correction technique.
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yaw moment for sinusoidal input at 10.3 Hz.
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Figure 5.6 Measured mean AOA, estimated bias, and corrected mean AOA versus
yaw moment for sinusoidal input at 14.4 Hz.
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5.2.3 High Speed Transport Model Test Results

A high speed transport model system that experienced high levels of vibration [6] during
previous wind tunnel tests was selected to further investigate the effects of dynamics on
the inertial AOA package. Measurements taken during wind tunnel tests indicated that
the primary modes being excited were at approximately 8-10 Hz and 28-30 Hz [6]. An
experimental modal analysis of the model system was conducted and the results are listed
in Table 5.2. The radii and corresponding correlation coefficients for the vibration modes
were estimated using a least square linear regression fit of the modal deformations as
described in Chapter 4. The correlation coefficient for the least square fit of the fuselage
mode shape coefficients shows the appropriateness of the linear regression fit and

validates the rigid body model assumption for the tabulated modes.

Table 5.2
Modal Parameters of High Speed Transport Model

Mode | Frequency | Damping | Radius Corr. Mode Description
No. (Hz) (%) (Inch) Coeff.
1 9.0 1.32 31.0 9997 | Sting Bending-Yaw Plane
2 9.2 1.68 30.2 9997 | Sting Bending-Pitch Plane
3 20.5 2.75 0.18 -.9993 | Model Yaw on Balance
4 21.7 2.70 -1.07 9999 | Model Pitch on Balance
5 208 2.28 -7.16 -.9983 | Model Yaw on Balance
with Sting Second Bending
6 349 2.59 -7.65 0.9999 | Model Pitch on Balance
with Sting Second Bending
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It is important to note that the mode radius may be positive or negative dependent on the
vibration mode shape. Previously, this bias error was described as a "sting whip" [13]
error and associated with the first sting bending modes in the pitch and yaw planes. The
analyses and experimental data presented in this dissertation show that the model system
dynamics is more complex than previously assumed. The physical interpretation of the
sign of the radius is more easily understood by examining the 9.0 Hz and 29.8 Hz yaw
modes shown in Figures 5.9 and 5.10. For the case where the radius is negative, the point
of rotation for the vibration mode is forward of the AOA package. A positive radius is

defined for a point of rotation aft of the AOA package.

The significance of the sign of the radii is that the bias error may be positive or negative
dependent upon the vibration mode being excited. This is demonstrated by the response
of the two yaw plane modes shown in Figures 5.11 and 5.12. For the 9.0 Hz yaw mode,
the indicated model angle change is negative when the model is being driven with
sinusoidal excitation at the natural frequency and then returns to its nominal angle when
the shaker system is shutoff. The 29.8 Hz yaw mode, which has a negative radius value,
shows an indicated positive angle change when the model is being driven with sinusoidal
excitation at the natural frequency and then returns to its nominal angle when the shaker
system is shutoff. The excitation system was adequate to show the above trends,
however, only the first mode in each the yaw and pitch planes were excited to levels that
showed significant shifts in the indicated model attitude from the onboard inertial AOA

package. Difficulty in driving the higher frequency modes is attributed to the rigid
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Figure 5.11  Inertial AOA measurement, yaw acceleration, and yaw moment versus
time for 9.0 Hz sinusoidal input in yaw plane.
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Figure 5.12  Inertial AOA measurement, yaw acceleration, and yaw moment versus
time for 29.8 Hz sinusoidal input in yaw plane.
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backstop support in the model assembly bay. During previous wind tunnel tests [6], the
model coupled with the model support structure resulting in high dynamic yaw moments
with energy in the 28-30 Hz band. This points out the need to do dynamic testing with

the model installed in the tunnel.

The results of sinusoidal excitation tests for the first mode in each the yaw and pitch
plane are shown in Figures 5.13 and 5.14. The model was set at a nominal angle of 0° for
these tests. For a set excitation level, time domain data were acquired and stored using
the dynamic signal analyzer. These data were transferred to a personal computer where
the modal correction technique, implemented in an m-file in the MATLAB® [35]
language, was used to estimate the bias error in the inertial device. This procedure was

repeated for several excitation levels as defined by the moment amplitude level.

As shown in Figures 5.13 and 5.14, the estimated bias error is in good agreement with the
indicated mean angle change measured with the onboard inertial AOA sensor. After
application of the modal correction method, the bias error is reduced from a maximum of
-0.146° to -0.009° for the first mode in the yaw plane and from -0.175° to -0.006°
for the first mode in the pitch plane. These corrected mean angle of attack values are
within the AOA accuracy requirement of 0.01°. Similar results were obtained for

sinusoidal input tests with the model set to nominal angles of 4.3° and 6°.
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Figure 5.13  Measured mean AOA, estimated bias, and corrected mean AOA versus
yaw moment for sinusoidal input at 9.0 Hz.
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In order to obtain a corrected time domain angle of attack measurement that can be used
for instantaneous or average values, it is important to maintain the phase relationship
between the measured and estimated bias error. To verify that the modal correction
method maintains this phase relationship, the bias error was examined for modulated
sine and random inputs. The measured response for modulated sine and random inputs is

also more representative of actual wind tunnel test data.

Figure 5.15 shows the measured angle of attack and estimated bias error as a function of
time for a 9.2 Hz pitch excitation with a 0.25 Hz modulation. Excellent agreement is
obtained with the difference between the measured angle of attack and estimated bias
error being less than 0.005°. Modulated sine tests were conducted at several excitation
amplitude levels for the first mode in each the y and z axes and consistent results were

obtained between the measured angle of attack and predicted bias errors for all cases.

In addition, the response of the AOA package for two levels of random excitation in the
pitch plane were also examined. Figure 5.16 shows an eight second record of the inertial
AOA sensor response for the highest level random excitation. The random response
measured by the pitch accelerometer on the face of the AOA package was composed of
primarily 9.2 Hz response. The bias error estimate based on only the 9.2 Hz mode
contribution is also shown in Figure 5.16. Again, the measured angle of attack and

estimated bias error are in very good agreement.
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5.3 High Speed Transport Model Wind Tunnel Tests
Dynamic response studies were conducted on a high speed transport model installed in
the test section of the NTF. The dynamic response characteristics were also recorded for

high speed (Mach=0.95) wind tunnel runs.

5.3.1 Test Setup in Wind Tunnel

The model was instrumented with a re-designed inertial AOA package that has two servo-
accelerometers for measuring model AOA and two dynamic accelerometers to measure
the accelerations tangent to the sensitive axis of the AOA sensors. The package is
maintained at a constant temperature of 160°F. The signal conditioner for the AOA
sensors provide both an unfiltered, dynamic, O to 300 Hz bandwidth signal and a filtered,

static, O to 0.4 Hz bandwidth signal.

Initial wind-off dynamic response studies were performed in the wind tunnel test section
using shaker excitation of the model with the arc sector in a fixed position. For the wind-
off shaker excitation tests, six additional accelerometers were mounted external to the

model fuselage to measure model yaw and pitch motion at three locations.

Data were acquired using a 16 channel digital data acquisition system with 16-bit
resolution. All dynamic signals were filtered to 100 Hz prior to recording. Data were
recorded at 200 samples per second per channel. Recorded channels included the dynamic

and static inertial AOA outputs, the tangential accelerations in yaw and pitch, and the six
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force balance components. Data were recorded for both the wind-off shaker excitation

tests and the high speed wind tunnel runs.

For the wind-off shaker excitation tests, a Hewlett Packard model 3566A dynamic signal
analyzer was used to provide the shaker stimulus and perform on-line time and frequency
domain signal analysis. The 16 channel signal analyzer was used to monitor and record
the shaker force input, and the response of the six accelerometers mounted external to the

model fuselage.

The shaker excitation tests were performed with the model installed in the test section
and the arc sector in a fixed position. An electrodynamic shaker was used to excite the
model in the yaw plane through a single point force linkage 13 inches aft of the model
nose. Due to schedule constraints, the forced response tests were conducted in the yaw
plane only. The model system natural frequencies were identified using sine sweep
excitation. The dynamic and static inertial AOA outputs, the tangential accelerations in
yaw and pitch, and the six force balance components were recorded for a series of shaker
force amplitude levels for sinusoidal excitation at a prescribed natural frequency of the
model system. In addition to the sinusoidal forced response tests, modulated sine
excitation tests were performed for a series of shaker force levels. The modulated sine
excitations and responses are more representative of the model dynamics observed in

actual wind tunnel tests.
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For a given test condition, time domain data were acquired and stored on the 16-channel
data acquisition system. These data were transferred to a personal computer where a
software routine implementing the modal correction method, written as an M-file in the
MATLAB® [35] language, was used to estimate and correct for the bias error in the

inertial device.

5.3.2 Dynamic Response Tests in Wind Tunnel

An experimental modal analysis was performed for a high speed research model installed
in the NTF wind tunnel and the dominant modes are listed in Table 5.3. The model was
configured differently than in previous wind-off vibration tests, therefore, the modal
characteristics are different than those presented in the previous section. The mode radii
and corresponding correlation coefficients are also listed in the table. The correlation

coefficients again confirms the rigid body model assumption.

Table 5.3

Modal Parameters for Survey of High Speed Transport Model in Test Section

Mode Frequency | Damping | Radius Corr. Mode Description
No. (Hz) (%) (Inch) Coeff.

1 7.3 0.46 37.8 9992 | Sting Bending-Yaw Plane

2 9.8 0.28 31.8 9995 | Sting Bending-Pitch Plane

3 12.1 0.51 8.71 9995 | Sting/Model Yaw

4 16.9 1.3 -0.93 -.9985 | Model Pitch on Balance

5 17.2 1.0 -3.40 -.9998 | Model Yaw on Balance

6 21.1 0.36 -9.54 -.9994 | Model Yaw, 2nd Sting

Bending

86



The results of sinusoidal excitation tests for the first mode (7.3 Hz) in the yaw plane are
shown in Figure 5.17. This figure shows the angle of attack measured with the primary
servo-accelerometer sensor and the corrected angle of attack after removal of the
dynamically induced bias error. These tests were conducted with the model at a nominal
angle of 6.01° and the arc sector in a fixed position. After application of the modal
correction method, the error is reduced from a maximum of -0.087° to +0.003° for the
first mode in the yaw plane. As shown in Figure 5.17, the corrected AOA measurements
are within the AOA accuracy requirement of +/- 0.01°. The higher frequency modes were
not excited to high enough levels to produce significant shifts in the AOA measurements

during the wind-off vibration tests.

In addition to the sinusoidal tests, the bias error was examined for modulated sine input.
Figure 5.18 shows the angle of attack measured with the primary servo-accelerometer
sensor and the corrected angle of attack after removal of the dynamically induced bias
error. This data was obtained for excitation at the 7.3 Hz natural frequency with a 0.5 Hz
modulation. The corresponding measured yaw moment is also shown in Figure 5.18 and
has a maximum peak-to-peak value of 2400 in-lbs. Excellent correction is obtained
using the modal correction method with errors as large as -0.091° being reduced to less
than +/- 0.005° from the nominal angle. Modulated sine tests were conducted for the first
mode at several excitation amplitude levels and consistent results were obtained. For this
type of model response, correction for the dynamically induced errors results in a shift in

the mean value and a reduction in the variance of the signal.
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Figure 5.17. Measured and corrected angle-of-attack for sinusoidal excitation at 7.3Hz.
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5.3.3 Wind Tunnel Test Results

The data for the first 64 seconds of a test on the high speed transport model (Mach=0.95,
Q=1800 pounds-per-square-foot, T=-254°F) were used to evaluate the dynamic response
characteristics of the primary AOA sensor and the proposed modal correction method.
The filtered output of the primary AOA is shown in Figure 5.19. Data analysis was
restricted to the periods where the model pitch angle was paused to obtain "steady-state”
aerodynamic data. The pitch acceleration was significantly lower than the yaw
acceleration over the data analysis period. Analysis of the model yaw acceleration
showed primarily 7.3 Hz response with additional energy at the 12.1 Hz natural
frequency. Intermittent response at other frequencies was observed. Initial application of
the modal correction method included the modes in Table 5.3. The AOA mean value and

standard deviation over each pause period are listed in Table 5.4.

Table 5.4
Summary of Wind Tunnel Results
Time Period Measured Measured AOA Corrected Corrected AOA
(Seconds) AOA Mean Standard AOA Mean Standard
(Degrees) Deviation (Degrees) Deviation
(Degrees) (Degrees)
0t09.25 -3.5664 0.0179 -3.5403 0.0121
12.5t0 32.5 -2.5094 0.0203 -2.4764 0.0082
40.75 to 52.5 -1.4803 0.0248 -1.4392 0.0088
56 to 64 -0.9308 0.0094 -0.9121 0.0057
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Figures 5.20 through 5.23 show the time domain response of the angle of attack measured
with the primary servo-accelerometer sensor and the corrected angle of attack after
removal of the dynamically induced bias error for each pause period. There were no

optical measurements to confirm the corrected AOA measurements.

Since the response was primarily at the 7.3 Hz and 12.1 Hz natural frequencies, which
have positive radii, trends consistent with the wind-off modulated sine test are expected.
For a mode with a positive radius and fluctuating amplitude of motion, correction for
dynamically induced errors will result in a positive shift in the mean value and a reduced
variance for the corrected signal. The significant reduction in the variation observed in
the corrected time domain AOA signal (Figures 5.20-5.23) as compared to the measured
primary AOA and the corresponding reduction in the standard deviation for the corrected
AOA measurement indicate successful application of the modal correction method. The
periods from 12.5 to 32.5 seconds and 40.75 to 52.5 seconds (part of which are shown in
Figures 5.21 and 5.22) are the best indicators of the amount of bias reduction possible.
The inclusion of more natural frequencies in the modal correction method may aid in
improving the bias correction. It is also important to note that the low frequency
fluctuations in the corrected AOA signal may be due in part to oscillatory changes in the

model pitch attitude.
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For this test, the data acquisition periods were longer than normal. The steady state data
at NTF is typically taken over a 1 second period. Differences between the corrected and
measured mean values over a given one second interval may be much larger than those
shown in Table 5.4. The results for one second intervals from 16 to 22 seconds are listed
in Table 5.5. Differences between the measured and corrected AOA mean value as large

as -.064° are observed over the selected one second intervals.

Table 5.5
Summary of Wind Tunnel Results for One Second Data Acquisition Periods
Time Period | Measured AOA | Corrected ACA Difference
(Seconds) Mean Mean Measured -Corrected
(Degrees) (Degrees) (Degrees)
16 to 17 -2.531 -2.473 -0.058
17to0 18 -2.513 -2.483 -0.030
18to 19 -2.508 -2.478 -0.030
19 to 20 -2.550 -2.486 -0.064
20to0 21 -2.540 -2.481 -0.059
21t022 -2.511 -2.487 -0.024
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Chapter 6
CONCLUDING REMARKS
An original system dynamic analysis approach is presented to evaluate the effects of
model vibrations on measured aerodynamic wind tunnel data. Analytical and
experimental results show that centrifugal accelerations associated with model vibration
cause bias errors in the inertial model attitude measurements. Wind-off dynamic response
tests on two transport model systems found bias errors over an order of magnitude greater
than the required device accuracy. An analysis is presented that shows these errors can
not be removed by filtering or averaging. Equations are developed to show the influence

of the model attitude errors on the determination of the drag coefficient.

A new time domain technique is developed to correct for the dynamically induced errors
in the inertial model attitude measurements using measured modal properties of the
model system. This modal technique extends previous work to compensate for multiple
modes in the pitch and yaw plane. Previously, the problem was associated with "sting
whip" with no detailed analysis of the underlying system dynamics. Dynamic response
tests on two transport models in a laboratory environment demonstrated the need to
compensate for multiple modes. Theoretical and experimental modal analyses are
presented to provide physical insight into the model system dynamics. Based on
observed rigid body model motion for the low frequency modes of interest, the problem is
simplified. For a planar rigid body model mode, analysis shows that the fuselage motion

can be completely described by a translation and rotation degree of freedom. A mode

98



radius is defined to relate the translation and rotation degrees of freedom using analytical
or experimental mode shapes. Analyses are presented that show the mode radii are not
affected significantly by the aerodynamic loads experienced in a high dynamic pressure
wind tunnel environment. A correlation coefficient is defined and used to validate the

rigid body model assumption.

Due to short data acquisition periods and the multi-mode random response observed in
wind tunnels, state of the art digital signal processing techniques are required to
implement the modal correction method in the time domain. Bandpass filters are used to
isolate the effects of individual modes and then the mode effects are combined using the
principle of superposition. During the filtering processes, the phase relationship of the
unfiltered model attitude signal and the model dynamic response must be maintained. To
achieve zero-phase distortion, finite impulse response filters are applied in both the
forward and reverse directions. The modal correction method compensates for the
dynamically induced bias error and provides a corrected model attitude time signal that

can be used to correlate with time varying changes in the balance forces

The modal correction method is verified through a series of wind-off dynamic response
tests and actual wind tunnel test data. The wind-off dynamic response tests show the
method has the ability to reduce the bias error in the inertial model attitude device by over

an order of magnitude to achieve the required device accuracy.
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Theoretical and experimental results are presented that demonstrate the need to correct
for dynamically induced errors in inertial wind tunnel model attitude measurements. A
correction method requiring four additional transducers was developed and implemented
at the National Aerospace Laboratory in the Netherlands. A principal advantage of the
modal correction technique is that it minimizes the number of required transducers (two)
using the modal properties of the model system. This is especially critical for models
with limited interior space and in wind tunnels that have extreme temperature conditions
where heated instrumentation packages are required. Recently redesigned
instrumentation packages for the National Transonic Facility (NTF) provide the two
additional transducers required for the modal correction method. Currently, facilities in

the United States have not implemented a correction.

Future research of wind tunnel model system dynamics and its effects on measured
aerodynamic data is recommended in the following areas: (1) Perform a statistical
analysis to evaluate the significance of the magnitude of the angle of attack correction
with respect to the measured standard deviation, and small angle assumption for high
angles of attack; (2) Perform a study of the cross axis sensitivity of the inertial attitude
sensor, and the effects of model roll motions; (3) Perform a study of alternate signal
processing methods, such as modulation techniques, for removing the dynamically
induced errors in the inertial model attitude measurements; (4) Based on the observed
rigid body model behavior, perform a parametric study to evaluate changes in dynamic

response for variations in: mass or mass distribution of the model; balance stiffness and
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damping; and sting material properties. This research would be aimed at developing
design criteria for model systems that would minimize the model dynamic response and
move closer to the desired steady-state wind tunnel test conditions.  Further
enhancements may be found in the use of active vibration control techniques to suppress

the model vibrations.
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Appendix A

EFFECT OF AERODYNAMIC FORCES ON MODAL CHARACTERISTICS

Introduction

In this section, the effect of aerodynamic forces on the modal characteristics of a
cantilevered wind tunnel model system are examined. The objective is to validate the
assumption that the modal characteristics do not change significantly under the wind
tunnel test conditions. This is a fundamental assumption of the modal correction method
that enables wind-off estimates of the natural frequencies and mode effective radii to be
used for correction of the model attitude measurement during wind tunnel testing. A
finite element model (FEM) of a representative cantilevered transport model is used as
the basis for evaluating the modal characteristics for several loading conditions including
the most severe forces measured in a recent wind tunnel test on this model in the National

Transonic Facility (NTF).

Analytical Model

The finite element model of a representative cantilevered transport model system for the
NTF was generated and analyzed using the MSC/NASTRAN® [38] structural analysis
program. The FEM was developed with the goal of representing the low frequency (less
than 50 Hertz) "rigid-fuselage” modes that contribute to the errors in the inertial model
attitude measurements. Detailed modeling of the wings was not of interest for this study.

The sting and model fuselage are constructed of beam elements with equivalent material
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and cross-section specific geometric properties. The force balance which connects the
sting to the fuselage was modeled using a concentrated mass equal to the balance mass
and rigid bar elements. Springs were used at the connection between the rigid bar
element and the fuselage to represent the balance stiffness corresponding to the three
translation and three rotation degrees of freedom. The balance stiffness was determined
from experimental measurements. The wings are modeled as concentrated masses
attached to the fuselage using rigid bar elements. An additional lumped mass was used

to represent instrumentation and associated hardware.

The primary generalized forces are the unsteady aerodynamic loads. The aerodynamic
loads are modeled using a quasi-steady approximation [27]. The generalized
aerodynamic forces are modeled as:

OF =qoo XSXCF (A.1)
where, .. is the dynamic pressure and S is the characteristic area. The coefficient Cg will
be assumed linear and is a function of the model attitude. Similarly, the generalized
aerodynamic moments are modeled as:

OM =GouXSXdXCy (A.2)
where d is the characteristic length and the coefficient Cy is assumed linear and is a

function of the model attitude.

Data from a high-speed (Mach =0.9, q..=1800 pounds per square foot) wind tunnel test of

this transport model in the NTF were used to determine the four most severe loading
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conditions. To add additional conservatism, this data was scaled up to a dynamic
pressure of 2700 pounds per square foot. The resulting loading conditions are listed in
Table 1. These forces and moments were applied to the FEM at a point on the fuselage

coincident with the balance moment center.

Table 1
Transport Model
Worst Case Loading Conditions

Load Case Axial Force Normal Force Pitch Moment
(Pounds) (Pounds) (Inch-Pounds)

1 69 -2271 4000

2 63 -491 3158

3 -53 2688 1474

4 -184 6035 632

For each of the four different aerodynamic load cases, a static analysis was run to
generate a prestressed model and then the eigensolution was run for this prestressed
loading condition. The eigensolution was also run for the no load case to provide a

baseline set of natural frequencies and mode shapes.

Results and Conclusions

The purpose of the analysis was to assess the effect of aerodynamic loading on the modal
characteristics of a cantilevered wind tunnel model system. For the research presented in
this dissertation, an important constant is the modal radius which is estimated from a

linear regression fit of the fuselage mode shape coefficients. Therefore, the comparison
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criteria are natural frequencies and mode radii. The mode radius for the first six analytical
modes were estimated using the method described in Chapter 4. The natural frequencies
and mode radii for the different loading conditions are listed in Tables 2 and 3,
respectively.  The natural frequency does not shift significantly for any of the loading
conditions. For the largest aerodynamic forces measured on a representative transport
model in the National Transonic Facility, the predicted shifts in the modal radius were

less than 4%, which is negligible.

Table 2
Transport Model
Natural Frequency Comparison
No Load Load Load Load Load
Case 1 Case 2 Case 3 Case 4
Mode | Frequency | Frequency | Frequency | Frequency | Frequency | Maximum
(Hz) (Hz) (Hz) (Hz) (Hz) Difference
(%)
1 9.19 9.19 9.19 9.20 9.22 0.3
2 9.23 9.23 9.23 9.25 9.30 0.8
3 17.2 17.2 17.2 17.2 17.3 0.6
4 17.3 17.4 17.4 17.4 17.4 0.6
5 29.5 29.5 29.5 29.6 29.7 0.7
6 304 30.4 304 30.5 30.6 0.7

Note: * Difference (%) = (fioad-froload)/frotoad * 100
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Table 3
Transport Model
Mode Radius Comparison

No Load Load Load Load Load
Case 1 Case 2 Case 3 Case 4
Mode Radius Radius Radius Radius Radius Maximum
(Inch) (Inch) (Inch) (Inch) (Inch) Difference
(%)*
1 39.4 39.5 394 39.6 40.2 1.8
2 39.7 39.8 39.7 40.0 41.1 3.5
3 7.68 7.68 7.67 7.72 7.87 2.5
4 8.21 8.24 8.20 8.28 8.54 4.0
5 -3.67 -3.66 -3.67 -3.67 -3.64 -0.8
6 -3.17 -3.18 -3.17 -3.15 -3.14 -0.9

NOtCZ * leference (%) = (R]oad'Rno]oad)/Rnoload * 100
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